EconPapers    
Economics at your fingertips  
 

Symmetrical and unsymmetrical tip clearances on cavitation performance and radial force of a mixed flow pump as turbine at pump mode

Yue Hao and Lei Tan

Renewable Energy, 2018, vol. 127, issue C, 368-376

Abstract: Transient cavitating flows of a mixedflow PAT (pump as turbine) at pump mode are investigated experimentally and numerically. Radial force on principal axis is recorded and compared between pump with symmetrical and unsymmetrical tip clearance. Numerical simulation with improved cavitation model by modifying the vapor pressure is conducted, and the simulation results agree well with the experiments. Tip clearance has great influence on pump cavitation performance. The pump energy performance will deteriorate with tip clearance increasing. In addition, in comparison with the symmetrical tip clearance, the unsymmetrical tip clearance makes the pump cavitation performance worse. As the cavitation develops, the unsymmetrical tip clearance simultaneously influences the magnitude and direction of radial force, while the symmetrical tip clearance only influences the magnitude of radial force. The dominant frequencies of radial force of symmetrical and unsymmetrical tip clearances are related to the blade number and guide vane number, respectively. The maximum amplitude of force fluctuation for unsymmetrical tip clearance is 7 times that for symmetrical tip clearance.

Keywords: Pump as turbine; Symmetrical and asymmetrical; Tip clearance; Radial force; Cavitation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (71)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118304804
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:127:y:2018:i:c:p:368-376

DOI: 10.1016/j.renene.2018.04.072

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:127:y:2018:i:c:p:368-376