Regression by Integration demonstrated on Ångström-Prescott-type relations
Heinrich Morf
Renewable Energy, 2018, vol. 127, issue C, 713-723
Abstract:
We present a novel approach for the determination of the relationship between two random variables, which we call Regression by Integration. The resulting curve is a least absolute error estimate. Compared to other regression methods, it has the advantage that, instead of a sample of simultaneously taken pairs of the two random variables, only a separate sample of each of the random variables is required. We demonstrate the practicability of the method on Ångström-Prescott-type relations and compare the results with those obtained by least square error fits. We present supporting theoretical background information based on copulas. We show that Regression by Integration leads to the strict interdependence of the two random variables; Spearman's rho is equal to one.
Keywords: Ångström-Prescott relation; Copula; Curve fits; Regression by Integration; Random variable (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118305238
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:127:y:2018:i:c:p:713-723
DOI: 10.1016/j.renene.2018.05.004
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().