Anomaly detection and fault analysis of wind turbine components based on deep learning network
Hongshan Zhao,
Huihai Liu,
Wenjing Hu and
Xihui Yan
Renewable Energy, 2018, vol. 127, issue C, 825-834
Abstract:
Continuous monitoring of wind turbine health using early fault detection methods can improve turbine reliability and reduce maintenance costs before they reach a catastrophic stage. To achieve anomaly detection and fault analysis of wind turbine components, this paper proposes a deep learning method based on a deep auto-encoder (DAE) network using operational supervisory control and data acquisition (SCADA) data of wind turbines. First, a component DAE network model using multiple restricted Boltzmann machines (RBM) was constructed. Previously collected normal SCADA data from wind turbines were used to train this multilayer network model layer-wise to extract the relationships between SCADA variables. Then, a reconstruction error (Re) was calculated by using the DAE network input and its output reconstruction value, which was defined as the condition detection index to reflect the component health condition. Due to the acute changes and disturbances of wind speed in actual operation, the calculated detection index always has an extreme distribution that can cause false alarms. Therefore, an adaptive threshold determined by the extreme value theory was proposed and used as the rule of anomaly judgement. The method can not only implement early warning of fault components but also deduce the physical location of a faulted component by DAE residuals. Finally, the effectiveness of the proposed method was verified by some reported failure cases of wind turbine components.
Keywords: Wind turbine; SCADA data; Anomaly detection; Deep learning networks; Extreme value theory (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (43)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118305457
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:127:y:2018:i:c:p:825-834
DOI: 10.1016/j.renene.2018.05.024
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().