Mathematical model of a thermosyphon integrated storage solar collector
Marco Azzolin,
Andrea Mariani,
Lorenzo Moro,
Andrea Tolotto,
Paolo Toninelli and
Davide Del Col
Renewable Energy, 2018, vol. 128, issue PA, 400-415
Abstract:
Thermosyphon solar collectors are popular in warm climates since their initial and operating costs are lower compared to forced-circulation units. Recently new types of thermosyphon collector with integrated storage, without any external tank, to meet law requirements about solar applications in restricted areas (e.g. old town of particular architectural significance) are put in the market. Such a collector is modelled in this paper using the software MATLAB Simulink. This model is able to describe the transient behavior of the natural circulation phenomenon and it requires a much lower computational effort compared to CFD codes. The present mathematical model has been validated using ad-hoc experimental tests and numerical simulations. The validated model has been run varying the tilt angle, the geometry and the working conditions to analyze the solar thermosyphon performance. It can predict the minimum inclination and solar radiation that is needed to promote the flow circulation.
Keywords: Low temperature collector; Mathematical model; Integrated thermal storage; Experimental validation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118305780
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:128:y:2018:i:pa:p:400-415
DOI: 10.1016/j.renene.2018.05.057
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().