Numerical parametric study of the thermal and electrical performance of a BIPV/T hybrid collector for drying applications
Ya Brigitte Assoa,
François Sauzedde and
Benjamin Boillot
Renewable Energy, 2018, vol. 129, issue PA, 121-131
Abstract:
This paper deals with the identification of influencing variables permitting to optimize the thermal and electrical performance of a building integrated photovoltaic/thermal hybrid air collector suitable for fodder drying installation through numerical parametric studies. A 2D dynamic thermal and electrical mathematical model of the solar BIPV/T component is described and validated first in steady state under a solar simulator and later in dynamic conditions with three tests models and a 35 m2 solar PV/T drying installation test bench mounted in situ. Finally, numerical parametric studies were performed using the validated model by varying the emissivity of some constitutive layers and the air gap thickness. These analyses have demonstrated, as expected, that, in order to cool PV modules and to increase their electrical performance, a relevant choice of their emissivity or of the metal absorber emissivity is important. Also, there is an optimal air gap thickness, of nearly 8 cm in the configuration studied, for which increasing the level of ventilation is less significant and thus permitting the reduction of extractors' electrical consumption. As further step, the annual thermal and electrical performance of the solar collector will be analysed experimentally and numerically in real conditions considering the fulfilment of fodder drying requirements.
Keywords: Building integrated solar hybrid collector; Modelling; Experimentation; Air gap; Solar drying (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811830627X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:129:y:2018:i:pa:p:121-131
DOI: 10.1016/j.renene.2018.05.102
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().