Numerical study on the influence of vortex flow and recirculating flow into a solid particle solar receiver
M.R.I. Sarker,
Soumya Mandal and
Sumaiya Sadika Tuly
Renewable Energy, 2018, vol. 129, issue PA, 409-418
Abstract:
This paper presents a numerical study of a well-established vortex flow receiver and a proposed recirculating flow Solid particle solar receiver (SPSR) capable of achieving high air temperature which is perfectly suitable for the hybrid solar thermal power plant. Solar particle receivers are modeled using discrete particle model (DPM), RNG k- ε flow model and discrete ordinate (DO) radiation model. Numerical analysis is done by considering two cases (i) Recirculating flow solar receiver with non-reacting particle and without non-reacting particle as a medium of transferring heat (ii) Vortex flow solar receiver with non-reacting particle and without non-reacting particle as a medium of transferring heat. The examination is carried out to compare the parametric sensitivity of both solar particle receivers with particle and air and without particle as a medium of transferring heat by considering the solar flux that incident on the aperture of the receiver and varying the air flow rate and particle concentration, recirculation rate. The results depict that use of particle enhance the heat transfer for both cases. It is concluded from the thermal behavior of recirculating flow SPSR that about 30% higher cavity thermal efficiency and exhibit higher and uniform heat transfer than a vortex flow SPSR.
Keywords: Solar thermal power; Vortex flow; Recirculating flow; Irradiation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118306505
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:129:y:2018:i:pa:p:409-418
DOI: 10.1016/j.renene.2018.06.020
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().