EconPapers    
Economics at your fingertips  
 

Using artificial neural network and quadratic algorithm for minimizing entropy generation of Al2O3-EG/W nanofluid flow inside parabolic trough solar collector

Amir Ebrahimi-Moghadam, Behnam Mohseni-Gharyehsafa and Mahmood Farzaneh-Gord

Renewable Energy, 2018, vol. 129, issue PA, 473-485

Abstract: Entropy generation minimization approach, quadratic optimization algorithm and artificial neural network (ANN) have been applied to find optimal condition of the turbulent Al2O3-60:40% EG/W nanofluid flow inside the absorber tube of a parabolic trough solar collector (PTSC). A three-input ANN has been employed for predicting optimal volume fraction (ϕopt). The process is carried out for optimizing nanoparticle concentration, nanoparticle diameter, nanofluid average flow temperature and Reynolds number. Results show that the rate of the entropy generation decreases by decreasing volume fraction, increasing particle diameter and increasing average flow temperature. Adding the nanoparticles to the base-fluid increases frictional entropy generation and decreases thermal entropy generation. It causes an improvement in heat transfer but an increase in viscous irreversibility too. Finally, it was observed that for each particle sizes and average flow temperatures, there is a specific amount of optimal volume fraction, ϕopt; which is not dependent on the Re number. There is an optimal volume fraction for all Re numbers at constant particle size and mean flow temperature. Also, the optimum values of nanoparticle size, nanofluid average flow temperature and Reynolds number are found to be 90 nm, 360 K and 4000, respectively.

Keywords: Parabolic trough solar collector; Entropy generation minimization (EGM); Quadratic optimization algorithm; Artificial neural network (ANN); Nanofluid (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118306542
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:129:y:2018:i:pa:p:473-485

DOI: 10.1016/j.renene.2018.06.023

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:129:y:2018:i:pa:p:473-485