EconPapers    
Economics at your fingertips  
 

Physical and thermal characterization of ground bark and ground wood particles

Hamid Rezaei and Shahab Sokhansanj

Renewable Energy, 2018, vol. 129, issue PA, 583-590

Abstract: The present work reports the physical, size and shape, flowability, drying and devolatilization properties of ground wood and ground bark particles. Mechanical sieving and image processing identify the size and shape of ground particles, respectively. Ground particles are dried at initial moisture contents of 0.30, 0.50, 0.70 and 0.90 (dry mass basis) and drying temperatures of 70, 100, 130 and 160 °C. Devolatilization rate of particles is measured using a thermogravimetric analyzer. Microscopic investigations show that wood particles are longer and thinner than bark particles. More spherical shape facilitates the flowability of the bark particles. Wood particles are cohesive and have poorer flowability properties than bark particles. Bark particles have a lower internal void fraction than wood particles. Denser structure of bark particles diminishes the drying and devolatilization rate and prolongs the heat and mass transfer process compared to the wood particles.

Keywords: Ground bark particles; Ground wood particles; Size and shape; Flowability; Thermal characterization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118306839
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:129:y:2018:i:pa:p:583-590

DOI: 10.1016/j.renene.2018.06.038

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:129:y:2018:i:pa:p:583-590