EconPapers    
Economics at your fingertips  
 

Identifying the dominant physical processes for mixing in full-scale raceway tanks

A. Leman, M. Holland and R.O. Tinoco

Renewable Energy, 2018, vol. 129, issue PA, 616-628

Abstract: Open racetrack flumes represent the most common reactor for algae cultivation in the biodiesel industry, however, despite numerous experimental and numerical studies into reactor modifications, conditions remain suboptimal for algal growth. In response, a full-scale racetrack flume was constructed at the Ecohydraulics and Ecomorphodynamics Laboratory at the University of Illinois. Experiments on the racetrack flume were conducted for various depth and velocity conditions, using acoustic doppler velocimetry and surface particle velocimetry to characterize mean and turbulent velocity statistics, and dissolved oxygen measurements to investigate the effect of turbulent structures on gas transfer at the water-air interface. Longitudinal bed modifications were introduced to induce secondary flows in the straight portions of the flume. Semicircular and triangular bars of two different sizes were tested in an effort to increase the transfer velocity at the free surface. A range of flow structures were observed including secondary currents of Prandtl's first and second kinds, vortex shedding off of bend vanes, and periodic oscillations in surface lateral currents. Findings indicate that bend dynamics introduce the strongest and most resilient flow structures, and any attempt to induce vertical mixing or accelerate transfer velocities at the free surface will need to utilize or overwhelm these existing structures.

Keywords: Raceway; Algae biofuel; Mixing; Gas transfer; Secondary currents (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118306128
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:129:y:2018:i:pa:p:616-628

DOI: 10.1016/j.renene.2018.05.087

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:129:y:2018:i:pa:p:616-628