Survey of the near wake of an axial-flow hydrokinetic turbine in quiescent conditions
Ethan E. Lust,
Karen A. Flack and
Luksa Luznik
Renewable Energy, 2018, vol. 129, issue PA, 92-101
Abstract:
Flow field results are presented for the near-wake of an axial flow hydrokinetic turbine in quiescent flow conditions. The turbine is a 1/25 scale, 0.8 m diameter, two bladed turbine modeled after the Sandia National Laboratory Reference Model 1 Tidal Current Turbine. All measurements were obtained in the large towing tank facility at the United States Naval Academy with the turbine towed at a constant carriage speed and a tip speed ratio corresponding to maximum power production. The turbine is scale independent with respect to lift and very slightly dependent with respect to drag for these conditions (Rec@0.7R≈4×105). The wake velocity field data was obtained using a two-dimensional particle image velocimetry (PIV) system. PIV ensembles were obtained for phase locked conditions. This paper focuses on characterizing the velocity and the mean flow structure in the near wake. Specifically, the downstream evolution of coherent tip vortices shed by the rotor blades were examined. Vortex aperiodicity was shown to increase with downstream distance. The streamwise spacing between adjacent vortex cores was shown to be constant within a diameter downstream of the rotor. Further downstream, significant vortex filament interaction was observed, including leapfrogging. This interaction is thought to be the primary mechanism for wake breakdown and re-energization.
Keywords: Marine current turbine; Flow field; Wake survey; Towing tank; Particle image velocimetry; Aperiodicity (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118305962
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:129:y:2018:i:pa:p:92-101
DOI: 10.1016/j.renene.2018.05.075
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().