Solar pond with honeycomb surface insulation system
M. Arulanantham,
P. Avanti and
N.D. Kaushika
Renewable Energy, 1997, vol. 12, issue 4, 435-443
Abstract:
A solar pond consisting of transparent compound honeycomb encapsulated with Teflon film and glass plates at the bottom and top surface respectively, floating on the body of a hot water reservoir is considered and analysed for the heat transfer processes in the system. A mathematical model is developed where the energy balance equation of the convective water is formulated by considering its capacity effects, various heat losses and solar energy gain through the surface insulation and is solved by the finite difference method. Transient rate of heat collection and storage characteristics are investigated. Explicit emphasis is laid on the effect of the thickness of the bottom encapsulation on the year-round thermal performance of the system and results seem to favour the minimum thickness. The annual average efficiency of the transparent honeycomb insulated solar pond is found to be higher than the conventional salt gradient pond by a factor of about 2.
Date: 1997
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148197000657
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:12:y:1997:i:4:p:435-443
DOI: 10.1016/S0960-1481(97)00065-7
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().