EconPapers    
Economics at your fingertips  
 

Estimation of building energy consumption using weather information derived from photovoltaic power plants

Xueqian Fu and Xiurong Zhang

Renewable Energy, 2019, vol. 130, issue C, 130-138

Abstract: Photovoltaic power must be measured for billing purposes and to provide power injection information. To emphasise the importance of weather information derived from photovoltaic power data, we consider how building energy consumption is estimated. Photovoltaic power can be treated as an input to an energy consumption model rather than weather information (solar insolation, temperature, and/or relative humidity). We use a partial, mutual information algorithm for selection of the input variables required by a building consumption model; the data are derived from adjacent photovoltaic power stations. When weather information imparted by photovoltaic power is inadequate, the accuracy of energy consumption estimations can be improved by combining an empirical mode decomposition algorithm and an extreme-learning machine algorithm. Our energy consumption estimations, based on partial mutual information, empirical mode decomposition, and use of an extreme-learning machine, were verified using real data from Beijing and Guangzhou, China. The simulations show that the precision of estimation can be increased by fully exploiting the interdependence of photovoltaic power and building energy consumption.

Keywords: Photovoltaic; Partial mutual information; Empirical mode decomposition; Extreme-learning machine (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118307213
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:130:y:2019:i:c:p:130-138

DOI: 10.1016/j.renene.2018.06.069

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:130:y:2019:i:c:p:130-138