Modal analysis of a submerged spherical point absorber with asymmetric mass distribution
Fantai Meng,
Boyin Ding,
Benjamin Cazzolato and
Maziar Arjomandi
Renewable Energy, 2019, vol. 130, issue C, 223-237
Abstract:
Of all the wave energy converter (WEC) categories, the single-tether point absorber (PA) is one of the most widely used in the ocean renewable energy industry. In most published research, only the heave motion of the buoy is considered in the motion equation for the analysis. This is because the heave motion of the buoy strongly couples to the power take-off device (PTO), whereas the surge and pitch motions barely couple to the PTO. As a result, only the power arising from heave motion of the buoy can be efficiently absorbed when a single-tether PTO is used, leading to deficiency of the design in absorbing the power arising from its surge and pitch motion. In this paper, the deficiencies of single-tether PAs are addressed by simply shifting the center of gravity of the buoy away from its geometric centre. A spherical buoy with asymmetric mass is used in this paper for its simplicity. The asymmetric mass distribution of the buoy causes motion coupling across surge, heave and pitch motions, which enables strong coupling between the buoy's surge motion and the PTO movement. The operation principle and power generation of the spherical point absorber with asymmetric mass distribution (SPAMD) are investigated via a modal analysis conducted on a validated frequency-domain model. The results show that the SPAMD can be up to 3 times more efficient than the generic PAs when subjected to regular waves in the frequency range from 0.34 rad/sec to 1.4 rad/sec.
Keywords: Wave energy converter (WEC); Spherical point absorber with asymmetric mass; Hybrid frequency-domain model; Modal analysis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811830644X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:130:y:2019:i:c:p:223-237
DOI: 10.1016/j.renene.2018.06.014
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().