Timescales of energy storage needed for reducing renewable energy curtailment
Paul Denholm and
Trieu Mai
Renewable Energy, 2019, vol. 130, issue C, 388-399
Abstract:
Integrating large amounts of variable generation (VG) resources such as wind and solar into a region's power grid without causing significant VG curtailment will likely require increased system flexibility via changing grid operation and deploying enabling technologies such as energy storage. This article analyzes the storage duration required to reduce VG curtailment under high-VG scenarios. The three analysis scenarios assume VG provides 55% of the electricity demand in the largely isolated Electricity Reliability Council of Texas grid system in 2050, with three different proportions of wind and solar generation. Across the three scenarios, 11%–16% of VG energy is curtailed without storage due to system-generation constraints. When 8.5 GW of storage capacity with 4 h of duration are added, curtailment is reduced to 8%–10% of VG. Additional storage duration further reduces curtailment, but with rapidly diminishing returns. At least half the potential avoided-curtailment benefits are realized with 8 h of storage, and the first 4 h provide the largest benefit. At VG penetrations up to 55%, there appears to be little incremental benefit in deploying very-long-duration or seasonal storage.
Keywords: Energy storage; Variable generation; Wind; Solar; Photovoltaic; Curtailment (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (41)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118307316
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:130:y:2019:i:c:p:388-399
DOI: 10.1016/j.renene.2018.06.079
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().