Hydro-abrasive erosion in Pelton turbine injectors: A numerical study
Gianandrea Vittorio Messa,
Simone Mandelli and
Stefano Malavasi
Renewable Energy, 2019, vol. 130, issue C, 474-488
Abstract:
Numerical simulations were performed to investigate how the design and the operation conditions of a Pelton turbine injector affect its vulnerability to hydro-abrasive erosion, alongside with its flow control capacity. Use was made of a Volume Of Fluid (VOF) model for simulating the free nozzle jet, a Lagrangian particle tracking model for reproducing the trajectories of the solid particles, and two erosion models for estimating the mass removal. The comparison against earlier studies and the experimental evidence, integrated with a careful sensitivity analysis, gave strength to the reliability of the numerical model. Nozzle seat and needle were the injector components most vulnerable to erosion. As the valve was closing, the erosion of the needle strongly increased, whilst that of the nozzle seat remained broadly constant. The influence of the injector design was also explored, suggesting that a reduction of the needle vertex angle is likely to enhance the risk of erosive wear. Finally, it was found that the possibility to condense the effects of the needle stroke and the needle vertex angle in a single parameter (i.e. the effective opening area) is no more allowed when hydro-abrasive erosion is considered, thereby assessing the need for case-specific wear prediction analyses.
Keywords: Computational fluid dynamics; Discharge coefficient; Hydro-abrasive erosion; Pelton turbine injector (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811830716X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:130:y:2019:i:c:p:474-488
DOI: 10.1016/j.renene.2018.06.064
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().