Kinetics and thermodynamic analysis of levulinic acid esterification using lignin-furfural carbon cryogel catalyst
Muzakkir Mohammad Zainol,
Nor Aishah Saidina Amin and
Mohd Asmadi
Renewable Energy, 2019, vol. 130, issue C, 547-557
Abstract:
The synthesis of ethyl levulinate, a fuel additive, by catalytic esterification of levulinic acid with ethanol over carbon cryogel has been investigated. The carbon cryogel catalyst, coupled with a large surface area and strong acidity, has been identified as an effective carbon-based catalyst for obtaining high ethyl levulinate yield of 86.5 mol%. The pseudo-homogeneous kinetic model is adopted to evaluate the different reaction orders. The first-order pseudo-homogeneous model is considered most suitable (R2 > 0.98) while the selection of kinetic model is also clarified and supported by the linearity of the parity plot. The activation energy of the esterification reaction is estimated to be 20.2 kJ/mol. Based on the thermodynamic activation parameters, the reaction is classified as endergonic and more ordered. The results from this study could provide valuable information for reactor modeling and simulation purposes in the future.
Keywords: Ethyl levulinate; Esterification; Kinetic model; Thermodynamic; Levulinic acid; Carbon cryogel (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118307377
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:130:y:2019:i:c:p:547-557
DOI: 10.1016/j.renene.2018.06.085
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().