EconPapers    
Economics at your fingertips  
 

Computational drying model for solar kiln with latent heat energy storage: Case studies of thermal application

A. Khouya and A. Draoui

Renewable Energy, 2019, vol. 130, issue C, 796-813

Abstract: The use of solar energy in wood drying systems can reduce the often-heavy energy bill that manufacturers in this promising sector complain about. In this context, the study of solar kilns has received increasing attention and the work presented in this paper is a contribution for developing theoretical investigation during drying process of wood using solar energy. The system of drying consists of four units, solar air collector, cylindrical parabolic solar collector, drying and thermal storage unit. Two mathematical models of storage and drying are developed. The governing equations are solved by Newton Raphson's method for storage and finite difference techniques for the drying model. The results show that the size of the latent storage unit increases when the temperature level is raised. The integration of thermal storage unit into the solar kiln has the effect of reducing the drying time up to about 26.5%. The recovered heat process is efficient to improve markedly the amount of the energy supplied to the drying unit and reduce drying time up to about 47%. The effect of choosing the phase change material on the thermal storage unit is significantly important in terms of increasing the evaporation capacity and drying efficiency.

Keywords: Solar kilns; Thermal storage; Drying time; Recovered heat; Drying efficiency (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118307420
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:130:y:2019:i:c:p:796-813

DOI: 10.1016/j.renene.2018.06.090

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:130:y:2019:i:c:p:796-813