EconPapers    
Economics at your fingertips  
 

Thermal analysis of a finned receiver for a central tower solar system

A. Piña-Ortiz, J.F. Hinojosa, R.A. Pérez-Enciso, V.M. Maytorena, R.A. Calleja and C.A. Estrada

Renewable Energy, 2019, vol. 131, issue C, 1002-1012

Abstract: In this study, a thermal analysis of a finned receiver prototype for a thermosolar tower system is presented. The experimental system consists of parallelepiped aluminum enclosure of 1.2 m high, 1.23 m wide and 0.1 m depth. At the interior, 1232 cylindrical fins with a diameter of 0.0095 m (3/8″) and 0.09 m length increases the heat transfer area up to 225%. The vertical wall receives the incoming solar concentrated radiation from a group of heliostats whilst at the interior a constant flow of water removes the absorbed energy. Experimental temperature profiles were obtained at different heights and depths and a comparison was made with numerical results obtained with the use of commercial CFD software. It was found that the maximum thermal efficiency of the receiver was 94.4%, decreasing as the radiative flux increases.

Keywords: Heat transfer; Thermal receiver; Concentrated radiation; Solar tower system (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118309200
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:131:y:2019:i:c:p:1002-1012

DOI: 10.1016/j.renene.2018.07.123

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:131:y:2019:i:c:p:1002-1012