Geopolymer composites for the catalytic cleaning of tar in biomass-derived gas
R. Bendoni,
F. Miccio,
V. Medri,
P. Benito,
A. Vaccari and
E. Landi
Renewable Energy, 2019, vol. 131, issue C, 1107-1116
Abstract:
A novel application of geopolymers for the catalytic cleaning of biomass-derived syngas is reported. Powders of metal oxides, i.e. Fe2O3 and Mn2O3, were dispersed in a geopolymer matrix, to produce composites in granular form for fixed bed application. Additionally, a mixed Fe/Mn composite was produced to explore the combined effects of the two oxides. The activity of the new catalysts was investigated in real gasification conditions by means of a double fixed bed reactor, at 700, 800 and 900 °C. All the systems promoted an appreciable tar removal, while FE-SEM and MIP analyses demonstrated their stability at the process conditions. The best performances were obtained using the composite including both Mn and Fe oxides, which registered a tar decomposition up to 86% compared to inert sand, and 50% compared to olivine. A reasonable explanation was provided by TPR and XRD analyses, which pointed out an easier reducibility of this system.
Keywords: Biomass gasification; Geopolymers; Iron oxide; Manganese oxide; Tar (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118310176
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:131:y:2019:i:c:p:1107-1116
DOI: 10.1016/j.renene.2018.08.067
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().