EconPapers    
Economics at your fingertips  
 

Velocity and performance correction methodology for hydrokinetic turbines experimented with different geometry of the channel

Vimal Patel, T.I. Eldho and S.V. Prabhu

Renewable Energy, 2019, vol. 131, issue C, 1300-1317

Abstract: The aim of the present work is to study the influence of channel geometrical parameters on the performance of Savonius type hydrokinetic turbine and to present velocity correction methodology to determine the actual performance of the turbine. In the present experimental work, the effect of geometry of channel bottom and channel side wall distance on the performance of a Savonius turbine is investigated. Elevated channel bottom (hump) enhances the velocity of flow by reducing the depth of flow. Experimental results indicate that nearly an increase of 83% in power output is achieved by placing the turbine on the hump with reference to the turbine placed at the bottom of the channel. Similarly, the effect of channel sidewall location on the performance of turbine is studied for two separate cases, i. Constant flow rate - water spilling not allowed from blocked region and ii. Variable flow rate -water spilling over the blocked region allowed. In both the cases, the obtained coefficient of power is achieved above 0.45, considering the inlet velocity of flow. The results suggest that the potential head difference between the turbine inlet and outlet has the predominant effect on the power output of the turbine when a rotor is placed between the two closely located side walls.

Keywords: Savonius turbine; Hydrokinetic turbine; Maskell's correction; Blockage effect; Channel parameters; Velocity correction (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118309777
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:131:y:2019:i:c:p:1300-1317

DOI: 10.1016/j.renene.2018.08.027

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:131:y:2019:i:c:p:1300-1317