EconPapers    
Economics at your fingertips  
 

Optimization of a stand-alone photovoltaic–wind–diesel–battery system with multi-layered demand scheduling

Tu Tu, Gobinath P. Rajarathnam and Anthony M. Vassallo

Renewable Energy, 2019, vol. 131, issue C, 333-347

Abstract: Operational and financial optimization of a renewable energy-based stand-alone electricity micro-grid is described. Due to the large problem size in time-series models, we construct the model using mixed integer linear programming (MILP). As the constraints required in this model generally have modest complexity, we were able to perform piece-wise linearization on any non-linear variable relationship. Additionally, controls have also be applied on the demand side. Here, a two stage MILP model has been developed to minimize the overall levelized electricity cost for a micro-grid containing a photovoltaic power source, wind turbine, diesel generator, and an energy storage system. The model aimed to converge on a balance of decision accuracy and computational efficiency. Model outputs were capable of defining both the optimal system sizing and scheduling for each system component, with additional demand management control levers on the loss of power supply probability and load deferring allowance. We believe that this model is one of the first to explore the possibilities of the influences of potential demand management strategies in overall system cost reduction, while presenting a relatively efficient first-pass component sizing for stand-alone micro-grids.

Keywords: MILP; Demand scheduling; Load shifting; Off-grid; Optimization; Energy storage (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118308267
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:131:y:2019:i:c:p:333-347

DOI: 10.1016/j.renene.2018.07.029

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:131:y:2019:i:c:p:333-347