Investigation on effect of indoor air distribution strategy on solar air-conditioning systems
K.F. Fong,
C.K. Lee and
Zeteng Lin ()
Renewable Energy, 2019, vol. 131, issue C, 413-421
Abstract:
Stratum ventilation (SV), a new indoor air distribution strategy, has been promoted for applications in different building premises in recent years. Compared to the conventional mixing ventilation (MV), the prominent advantage of SV is that indoor thermal comfort can be satisfied with a relatively high supply air temperature, hence less energy consumption in refrigeration. In solar air-conditioning, the energy performance can also be facilitated by high-temperature cooling. As such, the potential of SV to be involved in solar air-conditioning was evaluated. In this study, the solar air-conditioning systems included solar absorption cooling system (SAbCS), solar adsorption cooling system (SAdCS), solar desiccant cooling system (SDCS), hybrid solar absorption-desiccant cooling system (HSAbDCS) and hybrid solar adsorption-desiccant cooling system (HSAdDCS). Their performances using SV and MV were determined through year-round dynamic simulation. Compared to the counterpart using MV, SAbCS, SAdCS, SDCS, HSAbDCS and HSAdDCS associated with SV could have 35%, 54%, 59%, 29% and 44% saving in the annual primary energy consumption for building in subtropical climate respectively. Benchmarked with the conventional air-conditioning system, they could have primary energy saving up to 30%. Consequently, solar air-conditioning and SV can have synergetic merit in building application in hot and humid city.
Keywords: Solar air-conditioning; Stratum ventilation; Absorption cooling; Adsorption cooling; Desiccant cooling; High-temperature cooling (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118308620
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:131:y:2019:i:c:p:413-421
DOI: 10.1016/j.renene.2018.07.065
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().