Transient heat transfer performance of a vertical double U-tube borehole heat exchanger under different operation conditions
Li Zhu,
Sarula Chen,
Yang Yang and
Yong Sun
Renewable Energy, 2019, vol. 131, issue C, 494-505
Abstract:
The transient thermal performance of a vertical double U-tube borehole heat exchanger (BHE) was numerically studied by validated heat transfer model. Further, the influence of several operation parameters, including inlet velocity, temperature and operation interval, on radial/axial soil temperature distribution were investigated. The simulation result showed that the increased amplitude of the BHE’s heat transfer rate was similar when charging temperature was increased under the same velocity conditions. Meanwhile, the difference of the heat transfer rate between 0.1 and 0.3 m/s was greater than that of the 0.3 and 0.5 m/s when the inlet temperature kept constant. The charging temperature had a more vital influence than the flow velocity on soil temperature lifting, and the flow velocity around 0.3 m/s was recommended under the conditions in this work. Moreover, the heat charging time had a more obvious effect on the heat transfer sensitive zone in the radial direction than the other two parameters. Finally, the choice of charging temperature, appropriate interval, space and depth of borehole were discussed. This study could contribute to the comprehensive understanding of the dynamic thermal behaviour and operation parameter optimization of BHE and its further application in the field of borehole thermal energy storage.
Keywords: Borehole heat exchanger; Soil temperature distribution; BTES; Operation parameter; Numerical simulation; Heat transfer (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811830870X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:131:y:2019:i:c:p:494-505
DOI: 10.1016/j.renene.2018.07.073
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().