EconPapers    
Economics at your fingertips  
 

Performance improvement and development of correlation for friction factor and heat transfer using computational fluid dynamics for ribbed triangular duct solar air heater

Rajneesh Kumar, Anoop Kumar and Varun Goel

Renewable Energy, 2019, vol. 131, issue C, 788-799

Abstract: Solar air heater (SAH) is a device used to convert sun radiations into heating applications. To improve its performance, the heat absorbing side of SAH is modified with the ribs called roughness. The flow characteristics and augmentation of heat due to square shaped ribs in SAH having triangular cross-sectional passage has been simulated using computational fluid dynamic (CFD) technique. The CFD simulations consisted of design and modeling of SAH. Two different roughness parameters has been considered in the analysis i.e. relative roughness pitch (P/e) and relative roughness height (e/D) and their value ranges from 5 to 13 (in four sets) and 0.013 to 0.05 (in four sets), respectively for Reynolds number varies from 3900 to 17900. Better augmentation of heat has been seen in SAH by providing ribs on the absorber plate. The highest improvement in heat transfer is seen of the order of 97% in P/e value of 10 and e/D value of 0.05 at Re of 17900. The thermohydraulic performance parameter (TPP) is also calculated and have highest value of 1.97 for P/e value of 10 and e/D value of 0.05 at Re of 17900. Correlation has been developed for both friction factor and Nusselt number based on observed results.

Keywords: Computational fluid dynamics; Turbulence models; Square rib roughened duct; Triangular duct SAH; Correlation for nusselt number and friction factor (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118308759
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:131:y:2019:i:c:p:788-799

DOI: 10.1016/j.renene.2018.07.078

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:131:y:2019:i:c:p:788-799