Optimizing the combination of conventional carbonaceous additives of culture media to produce lignocellulose-degrading enzymes by Trichoderma reesei in solid state fermentation of agricultural residues
Maryam Taherzadeh-Ghahfarokhi,
Reza Panahi and
Babak Mokhtarani
Renewable Energy, 2019, vol. 131, issue C, 946-955
Abstract:
Improving the production of lignocellulose-degrading enzyme such as cellulase and xylanase substantially increases the chance for cost-competitive production of cellulosic biofuel and other chemicals from such a biomass. In this study, the possible effects of carbonaceous additives including Tween 80, betaine, carboxymethyl cellulose (CMC) and lactose on cellulases and xylanase production were investigated individually or in combination. The enzymes were produced by Trichoderma reesei in solid state fermentation of wheat straw, wheat bran, rice straw and rice husk. The results proved that an individual additive could be an inducer or inhibitor based on the type of carbon source and targeted enzyme. For applying additives in combination, their roles depended on not only the type of carbon source and targeted enzyme but also their concentrations. Furthermore, a single additive with inhibitory role could be an inducer in combination with the other additives. For the best induction, the xylanase activity was about 469 U/gds with betaine as a single inducer. It increased to 218% with the mixture of Tween 80, betaine and CMC, supporting the combination of additives is more inducing. Applying the mixture of inducers can highly improve the process efficiency in lignocellulose-based biorefineries for both fuel and chemicals production.
Keywords: Lignocellulose-degrading enzymes; Biofuel; Agricultural residues; Cellulase; Xylanase; Inducer (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118309273
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:131:y:2019:i:c:p:946-955
DOI: 10.1016/j.renene.2018.07.130
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().