EconPapers    
Economics at your fingertips  
 

Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis

Alfredo Arcos Jiménez, Fausto Pedro García Márquez, Victoria Borja Moraleda and Carlos Quiterio Gómez Muñoz

Renewable Energy, 2019, vol. 132, issue C, 1034-1048

Abstract: The mass of ice on wind turbines blades is one of the main problems that energy companies have in cold climates. This paper presents a novel approach to detect and classify ice thickness based on pattern recognition through guided ultrasonic waves and Machine Learning. To successfully achieve a supervised classification, it is necessary to employ a method that allows the correct extraction and selection of features of the ultrasonic signal. The main novelty in this work is that the approach considers four feature extraction methods to validate the results, grouped by linear (AutoRegressive (AR) and Principal Component Analysis) and nonlinear (nonlinear-AR eXogenous and Hierarchical Non-Linear Principal Component Analysis), and feature selection is done by Neighbourhood Component Analysis. A supervised classification was performed through Machine Learning with twenty classifiers such as Decision tree, Discriminant Analysis, Support Vector Machines, K-Nearest Neighbours, and Ensemble Classifiers. Finally, an evaluation of the classifiers was done in single frequency and multi-frequency modes, obtaining accurate results.

Keywords: Feature extraction; NARX; NLPCA; NCA; Machine learning; Guided waves; Ice; Wind turbine blade; Classifiers (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118310000
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:132:y:2019:i:c:p:1034-1048

DOI: 10.1016/j.renene.2018.08.050

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:132:y:2019:i:c:p:1034-1048