Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis
Alfredo Arcos Jiménez,
Fausto Pedro García Márquez,
Victoria Borja Moraleda and
Carlos Quiterio Gómez Muñoz
Renewable Energy, 2019, vol. 132, issue C, 1034-1048
Abstract:
The mass of ice on wind turbines blades is one of the main problems that energy companies have in cold climates. This paper presents a novel approach to detect and classify ice thickness based on pattern recognition through guided ultrasonic waves and Machine Learning. To successfully achieve a supervised classification, it is necessary to employ a method that allows the correct extraction and selection of features of the ultrasonic signal. The main novelty in this work is that the approach considers four feature extraction methods to validate the results, grouped by linear (AutoRegressive (AR) and Principal Component Analysis) and nonlinear (nonlinear-AR eXogenous and Hierarchical Non-Linear Principal Component Analysis), and feature selection is done by Neighbourhood Component Analysis. A supervised classification was performed through Machine Learning with twenty classifiers such as Decision tree, Discriminant Analysis, Support Vector Machines, K-Nearest Neighbours, and Ensemble Classifiers. Finally, an evaluation of the classifiers was done in single frequency and multi-frequency modes, obtaining accurate results.
Keywords: Feature extraction; NARX; NLPCA; NCA; Machine learning; Guided waves; Ice; Wind turbine blade; Classifiers (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118310000
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:132:y:2019:i:c:p:1034-1048
DOI: 10.1016/j.renene.2018.08.050
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().