Social welfare maximization with the least subsidy: Photovoltaic supply chain equilibrium and coordination with fairness concern
Zhisong Chen and
Shong-Iee Ivan Su
Renewable Energy, 2019, vol. 132, issue C, 1332-1347
Abstract:
This study attempts to fill the literature gaps in the PV supply chain studies to understand better the effective equilibrium and coordination mechanisms in a PV supply chain with the fairness concern under the government subsidy policy and how an optimal subsidy factor is determined to achieve the social welfare maximization goal. Considering the government subsidy and the fairness concern of the core supply chain members, four basic game-theoretical model types (i.e. MS-leader Stackelberg Game, PA-leader Stackelberg Game, Nash Game and Revenue Sharing Contract) are formulated to study and compare the effects on the solutions and the performances by undertaking either an equilibrium or a coordination supply chain strategy. A total of 16 models are developed for the analytical and numerical studies with the findings and results complementing each other. It is found that a conflicting goal exists between the public sector and the private sector to develop a larger and healthier PV industry. A coordinated supply chain, theoretically, would perform better than an equilibrium supply chain since a coordination strategy in a PV supply chain allows the maximization of the social welfare using the least public subsidy and, simultaneously, generates many more supply chain profits for the PV supply chain comparing to the profits earned by those supply chain strategies without any subsidy. Smart and proper policies to resolve the conflict between the public and the private sectors are still very deficient and need more practical investigations.
Keywords: Photovoltaic (PV) supply chain; Supply chain equilibrium; Supply chain coordination; Fairness concern; Subsidy; Social welfare maximization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118310899
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:132:y:2019:i:c:p:1332-1347
DOI: 10.1016/j.renene.2018.09.026
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().