Research on project post-evaluation of wind power based on improved ANP and fuzzy comprehensive evaluation model of trapezoid subordinate function improved by interval number
Meng Wang and
Dongxiao Niu
Renewable Energy, 2019, vol. 132, issue C, 255-265
Abstract:
The safety operation and economic benefits of wind farms are paid more attention by industry and society. Therefore, it's necessary to evaluate the wind power projects to find the deviation between actual situation, forecast target and first-class level. The commonly used methods of post-evaluation are AHP and fuzzy comprehensive evaluation which have three problems to be solved. The first is AHP method can't represent the correlation among the indexes. The second is the uncertainty of project data and experts' judgment. The third is the rectangle membership function can't realize data classification between adjacent levels. ANP can describe the relationship between indicators to eliminate deviation caused by independent calculation. The trapezoidal membership function is useful for rapid classification data between adjacent levels by maximum membership degree. And the interval can utilize imperfect information to solve the limitation of point estimation. So this paper proposes ANP model and fuzzy comprehensive evaluation model based on trapezoid membership which are all improved by interval numbers to evaluate projects. The paper makes a calculation of Pinglu wind farm, and the result shows new model is more stable with accuracy and applicability for post-evaluation which can solve the problems such as incomplete information, data fluctuation and subjective judgment.
Keywords: Interval number; ANP; Fuzzy comprehensive evaluation; Project post-evaluation of wind power (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118309613
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:132:y:2019:i:c:p:255-265
DOI: 10.1016/j.renene.2018.08.009
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().