Multi-objective stochastic model for joint optimal allocation of DG units and network reconfiguration from DG owner’s and DisCo’s perspectives
Ehsan Kianmehr,
Saman Nikkhah and
Abbas Rabiee
Renewable Energy, 2019, vol. 132, issue C, 471-485
Abstract:
Optimal distribution system reconfiguration (DSR) and distribution generation (DG) allocation are viable solutions for improvement of technical and economic aspects of distribution systems. This paper proposes a stochastic multi-objective DSR (SMO-DSR) model, aims to maximize the DG owner’s profit and minimizes the distribution company’s (DisCo’s) costs. The uncertainties of wind power generation, electricity price, and demand are handled via scenario based approach. The proposed SMO-DSR model is solved via ε-constraint method and the best compromise solution is selected by fuzzy satisfying criterion. The model is a mixed integer non-linear programing (MINLP) problem which is implemented on IEEE 33-bus distribution system in General Algebraic Modeling System (GAMS) environment. To show the effectiveness of the proposed SMO-DSR approach, it is studied in different cases. A sensitivity analysis is also performed to show the effect of contract price of wind energy on the objectives of DisCo and DG owner. The obtained results substantiate the interaction between the DSR and DG allocation problems. Also, it is shown that the contract price of wind energy considerably influences both DG owner and DisCo schedules. Besides, when a compromise is made between the DG owner’s profit and DisCo’s cost, the power losses of the network is reduced.
Keywords: Distributed generation (DG); Distribution system reconfiguration (DSR); Multi-objective stochastic optimization; Uncertainty; Pareto optimal solutions (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118309820
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:132:y:2019:i:c:p:471-485
DOI: 10.1016/j.renene.2018.08.032
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().