EconPapers    
Economics at your fingertips  
 

Performance analysis of a small wind turbine equipped with flexible blades

David W. MacPhee and Asfaw Beyene

Renewable Energy, 2019, vol. 132, issue C, 497-508

Abstract: Wind turbine efficiency can drop drastically away from design conditions, which is especially troublesome for small fixed-pitch, constant speed types of devices and those operating in highly variable winds. Recent advances in the design of adaptive structures gives rise to a new turbine concept, employing continuous shape morphing, allowing the turbine to adapt more effectively to variable conditions. Such morphing blades could increase energy capture, and help small wind turbines become more economically viable through increased efficiency over a wide range of wind speeds and tip-speed ratios. In this paper, we examine the practicality of a flexible or morphing bladed turbine through experimental and numerical analysis. Experiments are conducted comparing a prototype rigid bladed design to an identical flexible one, with a total of 18 data sets containing 230 data points. Experimental results show that the flexible design outperforms the rigid one, especially when experiencing unfavorable loading conditions. Maximal corrected power coefficients were increased in all cases, up to 32.6%. The operational range was also increased in most cases, to a maximum of 34.5% over the rigid bladed design. These results suggest that the flexible design could produce more power than a rigid one, especially when conditions are sub-optimal.

Keywords: Wind; Turbine; Flexible; Energy; Morphing; FSI (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118309649
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:132:y:2019:i:c:p:497-508

DOI: 10.1016/j.renene.2018.08.014

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:132:y:2019:i:c:p:497-508