EconPapers    
Economics at your fingertips  
 

Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance

Ahmed I. EL-Seesy and Hamdy Hassan

Renewable Energy, 2019, vol. 132, issue C, 558-574

Abstract: In this article, the carbon nanomaterials; graphene oxide (GO), graphene nanoplatelets (GNPs), and multiwalled carbon nanotubes (MWCNTs) were mixed with 60% (by volume) jatropha methyl ester and 40% (by volume) n-butanol fuel (JME40B) to examine the performance and emission characteristics of a diesel engine. The GO, GNPs, and MWCNTs with a concentration of 50 mg/l were mixed with JME40B blends using ultrasonication technique. The engine was run under various loads at a constant speed of 2000 rpm. The results for JME40B blended fuel showed that the peak pressure and brake specific fuel consumption were increased up to 6%, and 22% respectively compared to pure diesel fuel. Furthermore, the addition of carbon nanomaterials with JMB40B resulted in a significant reduction in the specific fuel consumption by 35% and the engine exhaust emissions; NOx, CO, and UHC were reduced by 45%, 55%, and 50%, respectively compared to pure JME40B blends. Consequently, adding high n-butanol ratio with jatropha biodiesel fuel with the addition of carbon nanomaterials has the possibility to reach ultra-low NOx, CO, and UHC emissions meanwhile maintaining high thermal efficiency level.

Keywords: Jatropha methyl ester; n-Butanol; Carbon nanomaterials; Heat release rate; Engine performance; Emission characteristics (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118309728
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:132:y:2019:i:c:p:558-574

DOI: 10.1016/j.renene.2018.08.026

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:132:y:2019:i:c:p:558-574