Numerical modelling and investigations on a full-scale zeolite 13X open heat storage for buildings
Frédéric Kuznik,
Damien Gondre,
Kévyn Johannes,
Christian Obrecht and
Damien David
Renewable Energy, 2019, vol. 132, issue C, 761-772
Abstract:
Thermal energy storage is a key technology for heat management and efficient use of renewable energy production. High-power and high-density heat storage in buildings can be achieved with physisorption. The present work presents a study of a full-scale zeolite 13X open reactor to be integrated in the ventilation system of a dwelling. An original numerical model of the system is developed and validated using various data obtained from eight sets of experiments. The analysis of the energy chain shows that approximately 70% of absorbed energy is converted into useful heat released on discharge. However, approximately half of the total heat is also directly lost at the outlet of the adsorbent bed. The overall system efficiency is 36%.
Keywords: Physisorption; Heat storage; Numerical modelling; Energy analysis; Sankey diagram (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118309157
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:132:y:2019:i:c:p:761-772
DOI: 10.1016/j.renene.2018.07.118
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().