PV water pumping systems for domestic uses in remote areas: Sizing process, simulation and economic evaluation
A. Allouhi,
M.S. Buker,
H. El-houari,
A. Boharb,
M. Benzakour Amine,
T. Kousksou and
A. Jamil
Renewable Energy, 2019, vol. 132, issue C, 798-812
Abstract:
PV water pumping technology is recognized as a sustainable and environmentally friendly solution to provide water for domestic use. The appropriate design and smooth operation mostly rely on available solar irradiation, domestic water demand and appropriate configuration of the proposed system. Therefore, the aim of this work is to examine an optimum PV system configuration that is capable of supplying a solar submersible pump system to fulfill domestic water needs of five isolated houses located in a Moroccan remote area. A detailed approach for the design of an optimized PV water pumping system based on real water usage data is proposed. Besides, system design work and performance assessment were carried out based on hourly climatic conditions. Overall, two approaches were investigated for an optimum design of the proposed system. Annual simulations indicated that the direct coupling, as a first option, appears to be unfitting configuration for water pumping in this case. In turn, results proved that second system including a MPPT DC converter with less PV arrays could pump more water and its performance remarkably surpassed the direct coupling configuration. In addition, economic analysis has shown that proposed systems are cost competitive against the conventional water supply methods.
Keywords: Photovoltaic; Water pumping; Design; Regulation; Simulation; Economic analysis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118309698
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:132:y:2019:i:c:p:798-812
DOI: 10.1016/j.renene.2018.08.019
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().