Power output efficiency in large wind farms with different hub heights and configurations
Yu-Ting Wu,
Teh-Lu Liao,
Chang-Kuo Chen,
Chuan-Yao Lin and
Po-Wei Chen
Renewable Energy, 2019, vol. 132, issue C, 941-949
Abstract:
Large-eddy simulation (LES) is used to investigate the effect of the spatial arrangement of a utility-scale wind turbine array on the power outputs. Eight turbine-array layouts are considered, where each has 120 turbines installed in 30 rows with aligned or staggered configurations along the wakewise direction. We perform the LESs of neutrally-stratified atmospheric boundary layer over the eight large wind farms with the turbines arranged with a perfectly-aligned configuration, four laterally-staggered configurations, and three vertically-staggered configurations. Unlike the alignment of the turbine micro-siting in the aligned wind farm, both the laterally-staggered and vertically-staggered configurations lead to the misalignment of the turbines with staggered arrangement in the lateral and vertical directions. Simulation results show that the power outputs in the wind farms have obvious decreases to 45–65% within the first 12 turbine rows and retain within that range in the rest. In general, the staggered wind farms produce more power than the aligned wind farm. The laterally-staggered wind farm configurations due to the better adaptability in spatial configuration provide higher power production in the first 6th turbine rows. Moreover, the vertically-staggered configuration causes clear reduction in the maxima of the velocity deficit and the turbulence intensity inside the farm wake flow.
Keywords: Large eddy simulation; Aligned wind farm; Staggered wind farm; Power output (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118310012
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:132:y:2019:i:c:p:941-949
DOI: 10.1016/j.renene.2018.08.051
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().