Influence of upstream turbulence on the wake characteristics of a tidal stream turbine
Mohammad H.B. Ahmadi
Renewable Energy, 2019, vol. 132, issue C, 989-997
Abstract:
The influence of the upstream turbulence intensity on the flow characteristics downstream of a laboratory-scale horizontal axis tidal stream turbine is investigated in this study. Three test cases with the same mean velocity and different turbulence intensities are simulated numerically using the hybrid large eddy simulation/actuator line modelling technique. The mean velocity components, mean turbulent fluctuations, velocity deficit and wake extension are compared along the streamwise direction to examine the upstream turbulence effects. The inflow conditions are generated by the mapping method using the mean velocity and turbulent profiles experimentally obtained for a turbulent open channel flow. Comparing results for the mean velocity and turbulent fluctuations shows that the upstream turbulence level strongly affects the flow characteristics downstream of the turbine by influencing the tip vortices breakdown process and in turn wake recovery. The comparison also reveals that the ambient turbulence level strongly influences the velocity deficit but it does not significantly affect the streamwise velocity and the radial location of tip vortices in the flow.
Keywords: Tidal turbines; ALM; LES; Turbulence; Wake recovery; Wake extension (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811831005X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:132:y:2019:i:c:p:989-997
DOI: 10.1016/j.renene.2018.08.055
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().