Encapsulation of high-temperature inorganic phase change materials using graphite as heat transfer enhancer
Yajuan Zhong,
Bingchen Zhao,
Jun Lin,
Feng Zhang,
Haoran Wang,
Zhiyong Zhu and
Zhimin Dai
Renewable Energy, 2019, vol. 133, issue C, 240-247
Abstract:
A quasi-isostatic pressing technique for encapsulating spherical high-temperature inorganic phase change materials (PCMs) was presented in this work. To enhance the thermal conductivity of PCMs, graphite powder was dispersed into the PCM pellets. Meanwhile, cellulose particles, as sacrificial particles, were mixed with the PCM pellets to relieve the volumetric expansion of the PCMs during the phase change process. The effects of the latent heat, thermal conductivity, and thermal expansion behavior of the PCM/graphite capsule were investigated. The PCM capsules were able to work at temperatures up to 900 °C, including undergoing a solid-liquid phase change at 803 °C with a latent heat of 159.6 J g−1, and survived more than 300 thermal cycles as thermal energy storage devices. The thermal performance of the PCM capsules between 500 and 900 °C was numerically investigated using a modified one-dimensional (1-D) enthalpy-based model. The results indicated that the average heat transfer of the PCM capsules with graphite-dispersed core was significantly elevated during both the charging (by 92.5% for 99% charge) and discharging (by 168.4% for 99% discharge) processes, compared to the pure core PCMs.
Keywords: Phase change materials; Thermal energy storage; Thermal management; Latent heat; Graphite (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118311777
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:133:y:2019:i:c:p:240-247
DOI: 10.1016/j.renene.2018.09.107
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().