EconPapers    
Economics at your fingertips  
 

Variable speed wind turbine control scheme using a robust wind torque estimation

Oscar Barambones, Jose A. Cortajarena, Isidro Calvo, Jose M. Gonzalez de Durana, Patxi Alkorta and A. Karami-Mollaee

Renewable Energy, 2019, vol. 133, issue C, 354-366

Abstract: This work proposes a robust controller for a variable speed wind turbine system with a doubly feed induction generator. The controller aims at tracking the optimal speed of the wind turbine so that extracts the maximum power from the wind. Also, a robust aerodynamic torque observer is proposed in order to avoid the use of wind speed sensors. This torque observer allows to estimate the aerodynamic torque to be used by the controller in order to calculate the value of the optimal reference speed for the wind turbine. The vector control theory is applied in the present approach, and thereby the stator flux-oriented control is used for controlling the speed of the wind turbine generator. The proposed robust control law is based on sliding mode control theory, which has proved to provide good performance under system uncertainties.

Keywords: Renewable energy; Wind energy; Sliding mode observer; Sliding mode control; DFIG; Lyapunov stability (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118311935
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:133:y:2019:i:c:p:354-366

DOI: 10.1016/j.renene.2018.10.009

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:133:y:2019:i:c:p:354-366