Parameter estimation of fuzzy sliding mode controller for hydraulic turbine regulating system based on HICA algorithm
Zhihuan Chen,
Xiaohui Yuan,
Yanbin Yuan,
Xiaohui Lei and
Binqiao Zhang
Renewable Energy, 2019, vol. 133, issue C, 551-565
Abstract:
Global hydropower growth continues to increase with a relative higher rate of total installed capacity in just last 10 years. This expansion means that it is increasingly important to make a further research with respect to various hydropower stations. As the core of hydropower stations, hydraulic turbine regulating system (HTRS) attracts many attentions. In essence, HTRS is a complex nonlinear system that governs the frequency and the electrical power output of hydroelectric unit. The design of the control laws for the HTRS is an important and difficult task. In this study, a hybrid imperialist competitive algorithm (HICA) for the dynamic model of HTRS system is proposed and applied to estimate the parameters of fuzzy sliding mode controller (FSMC). In the proposed approach, sliding mode controller (SMC) is regarded as a robust control technique to the external uncertain load disturbances and fuzzy logic rule provides a better proportional gain and reduces the inherent chattering effect of the SMC controller. The HICA is developed to search optimal values of the control law and the membership functions of fuzzy logic rules. Simulations are carried out to verify the effectiveness of proposed approach, where the results show that compared with parallel PID controller and conventional SMC controller, the designed FSMC controller performs much better in terms of system performance and chattering reduction. Also, the results certify the superiority of the HICA algorithm in estimating the parameters for the proposed controller of HTRS in comparison to other classical evolutionary algorithms, where HICA reduces the value of the objective function by 3.28%, 5.33% and 9.69% compared with ICA, BSA, and PSO under unload condition, and HICA reduces the value of the objective function by 3.69%, 4.01% and 10.70% compared with ICA, BSA, and PSO under load condition.
Keywords: Imperialist competitive algorithm; Sliding mode controller; Fuzzy logic; Hydraulic turbine regulating system; Conduit system (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811831245X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:133:y:2019:i:c:p:551-565
DOI: 10.1016/j.renene.2018.10.061
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().