Predicting unsteady behavior of a small francis turbine at several operating points
Ahmed Laouari and
Adel Ghenaiet
Renewable Energy, 2019, vol. 133, issue C, 712-724
Abstract:
The simulated pressure-time, recorded at several monitoring points through the components of a small Francis turbine, show that the rotor - stator interactions (RSI) cause strong pressure fluctuations and torque oscillations even for the best efficiency operating point (BEP). The pressure fluctuations frequency and the mode shape and their sequence are predicted. At the low discharge operating point the significant drop in the static pressure is distinguishable at the inlet of the runner. The amplitude of the dominant frequencies at the low discharge operating point are larger than at BEP, in addition to other captured frequencies related to the occurrence of the vortex rope in the draft tube. The pressure fluctuations occurring in the vaneless space tend to propagate beyond the runner outlet and are influenced by the interactions between the runner and the draft tube. At most unstable operating conditions the pressure pulses within the runner passages are mainly related to RSI and channel vortices.
Keywords: Francis turbine; CFD; Hydraulic performance; Rotor-stator interaction (RSI); Unsteady flow (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118310619
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:133:y:2019:i:c:p:712-724
DOI: 10.1016/j.renene.2018.08.111
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().