Superiority of random inverted nanopyramid as efficient light trapping structure in ultrathin flexible c-Si solar cell
Quntao Tang,
Honglie Shen,
Hanyu Yao,
Kai Gao,
Ye Jiang,
Yufang Li,
Youwen Liu,
Lei Zhang,
Zhichun Ni and
Qingzhu Wei
Renewable Energy, 2019, vol. 133, issue C, 883-892
Abstract:
In this work, random inverted nanopyramids (INPs) are fabricated as light trapping structures on ultrathin c-Si through a simple and cost-effective wet chemical method, followed by a systematic investigation of the photo-capturing properties of INPs combining experiments and simulations. In comprehensive consideration of thickness loss and light trapping performance, random INPs are applied onto 45 μm ultrathin c-Si solar cell and a high short-current density (Jsc) (36.6 mA/cm2) and energy-conversion efficiency (17.0%) are achieved, which are 0.3 mA/cm2 and 0.13% respectively higher than that in micro pyramid textured one, and our electrical simulation also demonstrates that the advantages of INPs are more obvious on thinner c-Si compared with conventional micro pyramids. Finally, through electrical simulation, INPs textured 45 μm c-Si solar cell is expected to have a large improvement room for efficiency by controlling the front and rear surface recombination velocity. All the findings not only offer additional insight into the light-trapping mechanism in the random INPs but also provide controllable and efficient broadband light harvesters for next-generation cost effective flexible photovoltaics.
Keywords: Ultrathin c-Si solar cells; Photovoltaic devices; Metal assisted chemical etching; Mask-less fabrication; Inverted nanopyramids texturing; Light management (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118312473
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:133:y:2019:i:c:p:883-892
DOI: 10.1016/j.renene.2018.10.063
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().