EconPapers    
Economics at your fingertips  
 

Theoretical and experimental study on the uniformity of reflective high concentration photovoltaic system with light funnel

Cheng-Long Wang, Jing-Hu Gong, Jia-Jie Yan, Yuan Zhou and Duo-Wang Fan

Renewable Energy, 2019, vol. 133, issue C, 893-900

Abstract: The efficiency of GaAs solar cell was significantly reduced resulting from non-uniformity of energy flux-density on receiver surface, and damage of solar cells was made by “hot spots”. In this paper, a light funnel is added between the concentrator and the receiver to improve the uniformity of energy flux-density on receiver surface, which is designed according to the ray tracing method. The simulation result shows that the uniformity of the energy flux-density on the receiver surface is 92.26%, which agrees with the experimental result (94.64%). According to the maximum output efficiency of GaAs solar cell, the layout range of the cell is determined. The simulation results shown that the cell is arranged in the radius of 58 mm, which is similar to the experimental value (60 mm), and the effective area rate of the photoelectric conversion is 69.4%. At normal operation temperature (20 °C), the photoelectric conversion efficiency is 29.64%, and the total efficiency is about 83%.

Keywords: Reflective high power concentration photovoltaic; Homogenization technology; Ray tracing method; Light funnel (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118311972
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:133:y:2019:i:c:p:893-900

DOI: 10.1016/j.renene.2018.10.013

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:133:y:2019:i:c:p:893-900