EconPapers    
Economics at your fingertips  
 

Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine

Wen-Quan Wang, Rui Yin and Yan Yan

Renewable Energy, 2019, vol. 133, issue C, 91-102

Abstract: This paper developed a horizontal axis micro-hydrokinetic river turbine (HAMHRT) technology for local renewable energy applications. Firstly, a hydrofoil shape was selected, and the hydrodynamic and cavitation characteristics of the hydrofoils were analyzed, then the chord length and twist angle for different blade location were optimal, and finally a 2 m diameter with 3-bladed HAMHRT was designed. Then, the numerical computational model of a hydrodynamic analysis for the prototype HAMHRT was carried out to determine force distributions along the blade under normal and extreme operating conditions, including the non-designed conditions, different tip speed ratios as well as the different pitch angles. The rotor has a maximum efficiency of 25.2% at the river current speed of 0.8 m/s, pitch angle of 4° and TSR of 6. It is ensured that the rotor performance does not deteriorate in a relative large scope even if the current speed changes or if the TSR deviates from the design values. Finally, the unsteady behaviors of hydrodynamics of this HAMHRT were analyzed farther. From the output performance of this turbine, the designed rotor was found to have stable power output and good efficiency at current speeding conditions.

Keywords: Horizontal axis micro-hydrokinetic river turbine; Hydrofoils; Hydrodynamics; Unsteady flow; Computational fluid dynamics (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118311790
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:133:y:2019:i:c:p:91-102

DOI: 10.1016/j.renene.2018.09.106

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:133:y:2019:i:c:p:91-102