Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine
Wen-Quan Wang,
Rui Yin and
Yan Yan
Renewable Energy, 2019, vol. 133, issue C, 91-102
Abstract:
This paper developed a horizontal axis micro-hydrokinetic river turbine (HAMHRT) technology for local renewable energy applications. Firstly, a hydrofoil shape was selected, and the hydrodynamic and cavitation characteristics of the hydrofoils were analyzed, then the chord length and twist angle for different blade location were optimal, and finally a 2 m diameter with 3-bladed HAMHRT was designed. Then, the numerical computational model of a hydrodynamic analysis for the prototype HAMHRT was carried out to determine force distributions along the blade under normal and extreme operating conditions, including the non-designed conditions, different tip speed ratios as well as the different pitch angles. The rotor has a maximum efficiency of 25.2% at the river current speed of 0.8 m/s, pitch angle of 4° and TSR of 6. It is ensured that the rotor performance does not deteriorate in a relative large scope even if the current speed changes or if the TSR deviates from the design values. Finally, the unsteady behaviors of hydrodynamics of this HAMHRT were analyzed farther. From the output performance of this turbine, the designed rotor was found to have stable power output and good efficiency at current speeding conditions.
Keywords: Horizontal axis micro-hydrokinetic river turbine; Hydrofoils; Hydrodynamics; Unsteady flow; Computational fluid dynamics (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118311790
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:133:y:2019:i:c:p:91-102
DOI: 10.1016/j.renene.2018.09.106
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().