EconPapers    
Economics at your fingertips  
 

Experimental study of a modified evaporative photovoltaic chimney including water sliding

Maria Raquel Lucas (), J. Ruiz, F.J. Aguilar, C.G. Cutillas, A.S. Kaiser and P.G. Vicente

Renewable Energy, 2019, vol. 134, issue C, 161-168

Abstract: Solar cooling provides an ideal coupling between solar energy and the need for cooling, since both reach their maximum during the summer. However, solar refrigeration technologies either have not been competitive or are in a preliminary stage of development. Photovoltaic (PV) driven compression chillers are the most promising and close to market solar solutions today in the case of small to medium units (¡50 kW cooling) due to the tremendous decrease in the cost of PV modules. The main objective of this work is to improve the efficiency of a PV panel by cooling it on its upper face by water sliding and on its back side using a solar chimney. In addition, the system is used as heat sink of a water chiller working as a low scale cooling tower. The work developed consisted of adapting and testing a prototype, changing its mode of operation to overcome the limitations encountered in the first campaign of measures. Several tests were performed by modifying the water mass flow rate circulated to the nozzles (spray) and onto the PV upper surface (water film). For the test with a water flow rate in nozzles of 500 l/h and sliding 250 l/h the results show an average cooling of the panel of 15°C and an improvement in the electrical efficiency of the panel of about 10%. The modified system is still able to dissipate a thermal power of about 1500 W with a thermal efficiency exceeding 30% in summer conditions.

Keywords: Solar cooling; Solar chimney; Evaporative cooling; PV/T; Cooling tower; HVAC (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118313272
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:134:y:2019:i:c:p:161-168

DOI: 10.1016/j.renene.2018.11.008

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:161-168