Solar photovoltaics pumps operating head selection for the optimum efficiency
Kamlesh Yadav,
Atul Kumar,
O.S. Sastry and
Rupesh Wandhare
Renewable Energy, 2019, vol. 134, issue C, 169-177
Abstract:
Solar Photovoltaic Water Pumping (SPVWP) systems have established their potential as the most dependable and economically viable systems compared to the diesel based or grid-based electrical pumps. This paper presents an in-depth investigation of the energy efficiency of SPVWP system based on solar radiation, temperature, and operational heads. The study also identifies the shortcomings in the conventional design method based on Best Efficiency Point (BEP) concept that is applicable only in case of fixed frequency and voltage type pumps. However, in the case of SPVWP systems, due to variations in the solar intensity, ambient temperature, and water head, BEP concept does not offer the best efficiency design. The study experimentally proves that the model based on weighted system efficiency and Solar Operational Duty Head (SODH) increases the performance of SPVWP system (∼9% gain) and is consistently provide higher efficiencies in any season or under any climatic conditions.
Keywords: Solar photovoltaic water pump; Design duty point; Solar operating duty point (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118313326
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:134:y:2019:i:c:p:169-177
DOI: 10.1016/j.renene.2018.11.013
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().