EconPapers    
Economics at your fingertips  
 

Wind turbine fault diagnosis based on Gaussian process classifiers applied to operational data

Yanting Li, Shujun Liu and Lianjie Shu

Renewable Energy, 2019, vol. 134, issue C, 357-366

Abstract: Effective condition monitoring and fault diagnosis of wind turbines are crucial for avoiding serious damages to wind turbines. The supervisory control and data acquisition (SCADA) system of a wind turbine provides valuable insights into turbine performance. In order to make full use of such valuable information, this paper investigates fault diagnosis of wind turbines by using Gaussian process classifiers (GPC) to the operational data collected from the SCADA system. Both real-time and predictive fault diagnosis were considered. As an alternative to the support vector machine (SVM) technique, the GPC possesses the capability of providing probabilistic information about the fault types, which is valuable for making maintenance plan in real practice. The comparison results show that the GPC method is able to provide more accurate fault diagnosis results than the SVM technique on average.

Keywords: Wind turbine; Conditional monitoring; Predictive fault diagnosis; Gaussian process classification; Support vector machine (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118312916
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:134:y:2019:i:c:p:357-366

DOI: 10.1016/j.renene.2018.10.088

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:357-366