Optimal mapping of hybrid renewable energy systems for locations using multi-criteria decision-making algorithm
E.O. Diemuodeke,
A. Addo,
C.O.C. Oko,
Y. Mulugetta and
M.M. Ojapah
Renewable Energy, 2019, vol. 134, issue C, 461-477
Abstract:
This paper presents the optimal mapping of hybrid energy systems, which are based on wind and PV, with the consideration of energy storage and backup diesel generator, for households in six locations in the South-South geopolitical (SS) zone of Nigeria: Benin-city, Warri, Yenagoa, Port Harcourt, Uyo and Calabar. The optima hybrid energy systems are able to meet 7.23 kWh/day household's electrical energy demand. The hybrid energy system for each of the locations was optimally obtained based on HOMER software computation and TOPSIS multi-criteria decision-making algorithm that considers technical, economic, environmental, and sociocultural criteria. Wind energy potential was conducted for the six locations using the Weibull distribution function; the wind speed ranges between 3.21 and 4.19 m/s at 10 m anemological height. The wind speeds and the wind characteristics were extrapolated for 30 m and 50 m hub heights. The solar resource potentials across the six locations are also presented – ranges between 4.21 and 4.71 kWh/m2/day. The best hybrid system for the locations in Benin-city, Yenagoa and Port Harcourt is the Diesel generator-PV-Wind-Battery system; whereas the best hybrid system for the locations in Warri, Uyo and Calabar is the PV-Wind-Battery system. The hybrid systems in Benin-city, Yenagoa and Port Harcourt emit CO2, only 8.47%, 15.02% and 14.09% of the business as usual (the diesel generator). The payback time ranges between 3.7 and 5.4 years, using 0.893 US$/kWh cost of energy obtained for the business as usual. The cost of energy of the hybrid systems ranges between 0.459 and 0.562 US$/kWh, which compares well with available data in the public domain. The design parameters of the optima hybrid energy systems are also presented. The methodology presented here will serve as a design tool for renewable energy professionals.
Keywords: Hybrid renewable energy; Multi-criteria; TOPSIS; Techno-economic; Environment; HOMER software (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118313740
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:134:y:2019:i:c:p:461-477
DOI: 10.1016/j.renene.2018.11.055
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().