Effects of heave plates on the global performance of a multi-unit floating offshore wind turbine
Ha-Kun Jang,
Sewan Park,
Moo-Hyun Kim,
Kyong-Hwan Kim and
Keyyong Hong
Renewable Energy, 2019, vol. 134, issue C, 526-537
Abstract:
This paper aims to investigate the heave-plate effects on the behavior of a multi-unit floating offshore wind turbine (MUFOWT). The global performance of the large-scale, square-shape, semi-submersible floating platform equipped with 4 wind turbines at each corner, and 24 wave energy converters on frames along near-waterline is numerically simulated in time domain by using the in-house turbine-floater-mooring fully-coupled dynamic analysis program, MUFOWT. Cases with and without heave plates are systematically compared to identify the role of heave plates. For verification, an independent 1/50-scaled experiment was conducted by authors in the Korea Research Institute of Ships and Ocean Engineering's (KRISO) 3D wave basin. The numerical results with heave plates are extensively compared against the physical model-test results. Finally, the global performance results under survival-storm conditions, in which the WECs and blades of wind turbines are fixed, with and without heave plates are systematically investigated. The findings indicate that the heave plates are effective in reducing heave and pitch motions, and shift their natural frequencies with a minimal increase of mass.
Keywords: Multi-unit floating offshore wind turbine (MUFOWT); Time domain simulation; 1/50-scaled experiment; Semi-submersible; Heave plates (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118313521
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:134:y:2019:i:c:p:526-537
DOI: 10.1016/j.renene.2018.11.033
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().