EconPapers    
Economics at your fingertips  
 

Impact of building thermal load on the developed thermal plumes of a multi-borehole GSHP system in different canadian climates

Negar Daemi and Magdalena M. Krol

Renewable Energy, 2019, vol. 134, issue C, 550-557

Abstract: The environmental impacts and unsustainability of fossil fuel-based heating and cooling systems has encouraged a worldwide interest in developing sustainable sources of energy and complementary technologies for heating/cooling purposes. One of these technologies is ground source heat pump (GSHP) systems that use the ubiquitous low-enthalpy ground source heat found in the shallow subsurface and represents a sustainable way of heating and cooling homes and buildings. GSHPs can be used to extract or inject subsurface heat by installing boreholes that circulate an antifreeze-based carrier fluid which is cooled or heated through the subsurface. Although GSHPs have many advantages, they might develop subsurface thermal plumes, which can affect the efficiency and sustainability of the system and other subsurface infrastructures. In the present research, the effect of a multi-borehole vertical GSHP system designed to deliver annual heating and cooling to an office building located in three Canadian cities was examined. This was done using a three-dimensional model, developed in FEFLOW, that simulated a hypothetical GSHP system in all three cities. It was found that the city with the highest thermal load resulted in the biggest subsurface thermal plume showing a direct connection between building thermal load and thermal plumes. Cyclical simulations for 10 years showed that the plumes grew in both size and temperature disturbance after the 10-year operation. The developed model can be used to determine the thermal affected zone of a GSHP system to aid in planning of other subsurface infrastructures in that zone.

Keywords: Geothermal heating; Thermal plumes; Groundwater modelling (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118313934
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:134:y:2019:i:c:p:550-557

DOI: 10.1016/j.renene.2018.11.074

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:550-557