EconPapers    
Economics at your fingertips  
 

Optimization of biodiesel production from palm oil mill effluent using lipase immobilized in PVA-alginate-sulfate beads

Adamu Idris Matinja, Nor Azimah Mohd Zain, Mohd Suardi Suhaimi and Adamu Jibril Alhassan

Renewable Energy, 2019, vol. 135, issue C, 1178-1185

Abstract: In this study, production of biodiesel from palm oil mill effluent (POME) using immobilized Candida rugosa lipase was optimized using Box-Behnken design (BBD) of response surface methodology (RSM). The optimized parameters chosen were methanol/POME ratio, reaction time, weight of the immobilized beads and agitation speed. The highest yield of both palmitic acid methyl esters (PAME) and oleic acid methyl ester (OAME) was obtained at the following optimum conditions; agitation speed (300 rpm), oil/methanol molar ratio (1:6), incubation period (5 h) and weight of the immobilized beads weight (2 g). The important fuel properties of the biodiesel such as flash point, kinematic viscosity, water and sediment and copper strip corrosion were evaluated according to the American Society for Testing of Materials (ASTM D6751) and European Standard (EN 14214) and were found to be in good agreement with the standard quality and specification.

Keywords: Biodiesel; PVA-alginate-sulfate; POME; Response surface methodology; Box-Behnken design; Immobilization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811831526X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:135:y:2019:i:c:p:1178-1185

DOI: 10.1016/j.renene.2018.12.079

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:1178-1185