Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid
Luis Sebastián Mendoza Castellanos,
Ana Lisbeth Galindo Noguera,
Gaylord Enrique Carrillo Caballero,
André Leandro De Souza,
Vladimir Rafael Melian Cobas,
Electo Eduardo Silva Lora and
Osvaldo José Venturini
Renewable Energy, 2019, vol. 135, issue C, 259-265
Abstract:
The use of solar-powered Stirling engines to convert thermal energy into electricity is a promising and renewable technological solution that can contribute to reducing dependence on fossil fuels for electricity generation. Unfortunately, the lack of experimental performance data and operating parameters for this type of technology limits its detailed characterization, difficult its modeling and design and consequently its utilization. This paper aims to validate the mathematical model of the Dish/Stirling system previously published by Mendoza et al. (2017) with the TRINUM system, installed at the Federal University of Itajubá-Brazil. For nominal conditions, the Dish/Stirling system generates an electric power of 1.00 kW at a solar irradiation of 725 W/m2 with a system overall efficiency of 17.6%. The results show that for solar irradiance values between 520 and 950 W/m2 the experimental tests and the results of the mathematical modeling do not present considerable differences, obtaining an electric power of 1089 kWe and an efficiency of 17.98%, which represents deviations in the range of 2%–12%.
Keywords: Solar energy; Solar concentrator; Stirling engine; Numerical validation; Energy conversion; Thermal analysis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118314149
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:135:y:2019:i:c:p:259-265
DOI: 10.1016/j.renene.2018.11.095
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().